Development and Testing of a Stochastic Representation
of Ice Microphysical Properties in WRF -
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running simulations of well-observed field campaign cases that employ Diameter [mm]
this new framework, project goals include:

Raylelgh REﬂECtIVItY Increasing p;540,,m) from 50 to 500 kg m™ for a given b and increasing b from 1.5 to 2.5 increases surface precipitation accumulation.
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1) quantifying impacts of including ice microphysical parameter variability The b = 1.5, p;500,m) = 50 kg m™ simulation produces the narrowest convective and stratiform regions with the slowest ice fall speeds, leading to very high IWC, a

) o more realistic trailing anvil reflectivity, and more upright convection like observed, but with a weaker cold pool and slower squall propagation than observed.
on deep convective cloud and precipitation processes, <°: - * Increasing b to 2.5 or p; 54, to 500 kg m~ produces wider precipitation regions with stronger cold pools and faster propagating squall lines.
o ) § =  No a-b combination reproduces the observed reflectivity structure, but different a-b combinations clearly impact surface precipitation as well as ice size, number,
2) characterizing the spread of ensemble solutions generated from > 2 fallspeed, and bulk mass both directly and indirectly through dynamical feedbacks associated with cold pool strength.
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4) assessing potential improvement and causes for improvement of
simulated cloud properties using stochastic ice parameters through
comparison of model output with field campaign observations. .
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A parameterization framework has been developed that incorporates o
stochastically-varying microphysical parameters. This has been
implemented into the 1 ice category version of the Predicted Particle
Properties microphysics scheme (P3, Morrison and Milbrandt 2015) within
the Weather Research and Forecasting model (WRF).
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We initially focus on varying the “a” and “b” mass (m)-size (D) relationship
parameters for unrimed and partially-rimed ice, given by m = aD".

THE METHOD:
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X grid level
REFERENCES: Morrison, H., and J.A. Milbrandt, 2015: Parameterization of cloud ACKNOWLEDGEMENTS: We thank ASR for funding this work under grant DE-SC0016476, NOAA for providing NEXRAD data, and the Oklahoma Mesonet for providing surface
microphysics based on the prediction of bulk ice particle properties. Part I: meteorological data. We thank the Center for High Performance Computing (CHPC) at the University of Utah for computing and data storage resources.
Scheme description and idealized tests. J. Atmos. Sci., 72, 287-311.




